Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Brain ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Brain Research
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gene expression of EXT1 and EXT2 during mouse brain development

Authors: Masaru Inatani; Yu Yamaguchi;

Gene expression of EXT1 and EXT2 during mouse brain development

Abstract

Heparan sulfate (HS) and heparan sulfate proteoglycans (HSPGs) play significant roles in various biological processes. There is a wealth of circumstantial and experimental evidence suggesting the roles of HS in mammalian neural development. HS synthesis is governed by a series of enzymes. Among them, two enzymes, EXT1 and EXT2, catalyze polymerization of glucuronic acid and N-acetylglucosamine, the crucial step of HS synthesis. To obtain insight into the roles of HS in neural development, we examined the spatiotemporal expression patterns of EXT1 and EXT2 during mice brain development. RT-PCR analyses showed that expression of EXT1 and EXT2 peaks during early postnatal period in the cerebrum and around birth in the cerebellum. In situ hybridization revealed that in the embryonic brain, EXT1 and EXT2 were localized primarily in the neuroepithelial cells surrounding the lateral ventricles, the mesencephalic vesicle, and the fourth ventricle. In the early postnatal stage, intense expression of EXT1 and EXT2 was observed in the cerebral cortex and the hippocampus formation. In the postnatal cerebellum, expression of EXT1 and EXT2 was mainly observed in external and internal granular layers. Our results demonstrate that EXT1 and EXT2 are highly expressed in the developing brain, and that their expression is developmentally regulated, suggesting that HS is involved in various neurodevelopmental processes.

Keywords

Neurons, Telencephalon, Aging, Stem Cells, Brain, Gene Expression Regulation, Developmental, Cell Differentiation, N-Acetylglucosaminyltransferases, Hippocampus, Gene Expression Regulation, Enzymologic, Mice, Inbred C57BL, Mice, Fetus, Exostosin 2, Animals, Newborn, Cerebellum, Lateral Ventricles, Animals, Heparitin Sulfate, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!