Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Calcium
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Calcium
Article . 1996
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Calcium-induced calcium release in neurones

Authors: Verkhratsky, A.; Shmigol, A.;

Calcium-induced calcium release in neurones

Abstract

Neurones express several subtypes of intracellular Ca2+ channels, which are regulated by cytoplasmic calcium concentration ([Ca2+]c) and provide the pathway for Ca(2+)-induced Ca2+ release (CICR) from endoplasmic reticulum Ca2+ stores. The initial studies of CICR which employed several pharmacological tools (and in particular caffeine and ryanodine) demonstrated that: (i) caffeine induces intracellular calcium release in various peripheral and central neurones; and (ii) inhibition of CICR affects the parameters of depolarization-triggered [Ca2+]c responses. Experiments with caffeine demonstrated also that Ca2+ release from internal pools was incremental, suggesting the coexistence of several subpopulations of Ca2+ release channels with different sensitivity to caffeine. The CICR availability in neurones is controlled by both the Ca2+ content of the internal stores and the basal [Ca2+]c. Direct comparison of transmembrane Ca2+ influx with plasmalemmal Ca2+ current and [Ca2+]c elevation performed on sympathetic, sensory and cerebellar Purkinje neurones revealed the gradual activation of CICR. The efficacy of CICR may be regulated by the newly discovered second messenger cADP ribose (cADPR), although the mechanism of signal transduction involving cADPR is still unknown. CICR in neurones may be important in creation of local [Ca2+]c signals and could be involved in a regulation of numerous neuronal functions.

Keywords

Neurons, Animals, Calcium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    271
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
271
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!