<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 12636219
Tissue engineering will potentially change the practice of plastic surgery more than any other clinical specialty. It is an interdisciplinary field that promises new methods of tissue repair. There has been more than $3.5 billion invested in this field since 1990. Relevant areas of progress include advanced computing, biomaterials, cell technology, growth factor fabrication and delivery, and gene manipulation. Beneficial clinical techniques will emerge from continued investigation in each of these areas. Techniques that are developed must be scaled up to industry with products cleared by regulatory agencies and acceptable to clinicians and patients. A goal of tissue engineering is to change clinical practice, yielding improved patient outcomes and lower costs of care.
Tissue Engineering, Humans, Biocompatible Materials, Surgery, Plastic
Tissue Engineering, Humans, Biocompatible Materials, Surgery, Plastic
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |