Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TRAIL and Ceramide

Authors: Andrew A. Amoscato; Yong J. Lee;

TRAIL and Ceramide

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a clinically useful cytokine. TRAIL induces apoptosis in a wide variety of transformed cells, but does not cause toxicity to most normal cells. Recent studies show that death receptors (DR4 and DR5), decoy receptors (DcR1 and DcR2), and death inhibitors (FLIP, FAP-1, and IAP) are responsible for the differential sensitivity to TRAIL of normal and tumor cells. Several researchers have also shown that genotoxic agents, such as chemotherapeutic agents and ionizing radiation, enhance TRAIL-induced cytotoxicity by increasing DR5 gene expression or decreasing the intracellular level of FLIP, an antiapoptotic protein. Previous studies have shown that ceramide helps to regulate a cell's response to various forms of stress. Stress-induced alterations in the intracellular concentration of ceramide occur through the activation of a variety of enzymes that synthesize or catabolize ceramide. Increases in intracellular ceramide levels modulate apoptosis by acting through key proteases, phosphatases, and kinases. This review discusses the interaction between TRAIL and ceramide signaling pathways in regulating apoptotic death.

Related Organizations
Keywords

Membrane Glycoproteins, Tumor Necrosis Factor-alpha, Intracellular Signaling Peptides and Proteins, Apoptosis, Ceramides, Mitochondrial Proteins, TNF-Related Apoptosis-Inducing Ligand, Animals, Humans, Apoptosis Regulatory Proteins, Carrier Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?