<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 11153263
The nicotinamide adenine dinucleotides (NAD, NADH, NADP, and NADPH) are essential cofactors in all living systems and function as hydride acceptors (NAD, NADP) and hydride donors (NADH, NADPH) in biochemical redox reactions. The six-step bacterial biosynthetic pathway begins with the oxidation of aspartate to iminosuccinic acid, which is then condensed with dihydroxyacetone phosphate to give quinolinic acid. Phosphoribosylation and decarboxylation of quinolinic acid gives nicotinic acid mononucleotide. Adenylation of this mononucleotide followed by amide formation completes the biosynthesis of NAD. An additional phosphorylation gives NADP. This review focuses on the mechanistic enzymology of this pathway in bacteria.
Kinetics, Amide Synthases, Phosphotransferases, Escherichia coli, NAD, Oxidation-Reduction, NADP
Kinetics, Amide Synthases, Phosphotransferases, Escherichia coli, NAD, Oxidation-Reduction, NADP
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 119 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |