<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17765746
Major depressive disorder (MDD) is a debilitating and complex psychiatric disorder that involves multiple neural circuits and genetic and non-genetic risk factors. In the quest for elucidating the neurobiological basis of MDD, hippocampal neurogenesis has emerged as a candidate substrate, both for the etiology as well as treatment of MDD. This chapter critiques the advances made in the study of hippocampal neurogenesis as they relate to the neurogenic hypothesis of MDD. While an involvement of neurogenesis in the etiology of depression remains highly speculative, preclinical studies have revealed a novel and previously unrecognized role for hippocampal neurogenesis in mediating some of the behavioral effects of antidepressants. The implications of these findings are discussed to reevaluate the role of hippocampal neurogenesis in MDD.
Depressive Disorder, Major, Dentate Gyrus, Animals, Humans, Cell Differentiation, Antidepressive Agents, Cell Proliferation
Depressive Disorder, Major, Dentate Gyrus, Animals, Humans, Cell Differentiation, Antidepressive Agents, Cell Proliferation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 89 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |