Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Glycerophospholipid Identification and Quantitation by Electrospray Ionization Mass Spectrometry

Authors: H. Alex Brown; Mark Byrne; Stephen B. Milne; Pavlina T. Ivanova; Yun Xiang;

Glycerophospholipid Identification and Quantitation by Electrospray Ionization Mass Spectrometry

Abstract

Glycerophospholipids are the structural building blocks of the cellular membrane. In addition to creating a protective barrier around the cell, lipids are precursors of intracellular signaling molecules that modulate membrane trafficking and are involved in transmembrane signal transduction. Phospholipids are also increasingly recognized as important participants in the regulation and control of cellular function and disease. Analysis and characterization of lipid species by mass spectrometry (MS) have evolved and advanced with improvements in instrumentation and technology. Key advances, including the development of "soft" ionization techniques for MS such as electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI), and tandem mass spectrometry (MS/MS), have facilitated the analysis of complex lipid mixtures by overcoming the earlier limitations. ESI-MS has become the technique of choice for the analysis of multi-component mixtures of lipids from biological samples due to its exceptional sensitivity and capacity for high throughput. This chapter covers qualitative and quantitative MS methods used for the elucidation of glycerophospholipid identity and quantity in cell or tissue extracts. Sections are included on the extraction, MS analysis, and data analysis of glycerophospholipids and polyphosphoinositides.

Related Organizations
Keywords

Mice, Spectrometry, Mass, Electrospray Ionization, Animals, Glycerophospholipids, Sensitivity and Specificity, Chromatography, High Pressure Liquid, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    143
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
143
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!