
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 9522459
Dynactin is a multisubunit complex that binds to the minus-end-directed microtubule motor cytoplasmic dynein and may provide a link between the motor and its cargo. Results from genetic studies in Saccharomyces cerevisiae, Neurospora crassa, Aspergillus nidulans, and Drosophila have suggested that cytoplasmic dynein and dynactin function in the same cellular pathways. p150Glued, a vertebrate homologue of the Drosophila gene Glued, is the largest polypeptide in the dynactin complex with multiple protein interactions. Centractin, the most abundant dynactin subunit polypeptide, forms an actin-like filament at the base of the complex. Studies on dynamitin, the 50-kDa dynactin subunit, predict a role for dynactin in mitotic spindle assembly. Other subunits of dynactin have also been cloned and characterized; these studies have provided insight into the role of the complex in essential cellular processes.
Cell Nucleus, Dyneins, Biological Transport, Dynactin Complex, Axonal Transport, Microtubule-Associated Proteins
Cell Nucleus, Dyneins, Biological Transport, Dynactin Complex, Axonal Transport, Microtubule-Associated Proteins
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 133 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
