
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 17682345
The study of the profile of gene expression in a cell or tissue at a particular moment gives an insight into the plans of the cell for protein synthesis. Recent technological advances make it possible to analyze the expression of the entire genome in a single experiment. These "gene expression assays" complement or replace previous assays which measured the gene expression of only one gene, or a select group of genes. Within this chapter we outline the development of the gene expression assay and provide examples of the wide range of disciplines in which it is used. An overview of the current technologies is given, and includes an introduction to laser capture microdissection and linear amplification of RNA, both of which have extended the application of gene expression assays. Illustrative examples in the field of cancer and neuroscience highlight the scientific achievements. This technology has made in understanding the pathogenesis of diseases, including breast cancer, Huntington's disease, and schizophrenia. With recent advances including exon arrays to investigate alternative splicing, tiling arrays to investigate novel transcription start sites, and on-chip chromatin immunoprecipitation to investigate DNA-protein interactions, the future of gene expression assays is set to further our understanding of the complexities of gene expression.
Gene Expression Profiling, Mental Disorders, Gene Expression, Nucleic Acid Hybridization, Gene Expression Regulation, Genetic Techniques, Neoplasms, Humans, Nervous System Diseases, Oligonucleotide Array Sequence Analysis
Gene Expression Profiling, Mental Disorders, Gene Expression, Nucleic Acid Hybridization, Gene Expression Regulation, Genetic Techniques, Neoplasms, Humans, Nervous System Diseases, Oligonucleotide Array Sequence Analysis
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
