Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmacology and Experimental Therapeutics
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Progression from Homologous to Heterologous Desensitization of Contraction in Gastric Smooth Muscle Cells

Authors: SEVERI C; CARNICELLI, VERONICA; DI GIULIO, Antonio; ROMANO G; BOZZI, Argante; ORATORE A; STROM R; +1 Authors

Progression from Homologous to Heterologous Desensitization of Contraction in Gastric Smooth Muscle Cells

Abstract

Acute desensitization of contraction and its relative mechanisms have been studied in smooth muscle cells isolated from guinea pig stomach. Desensitization was induced by pre-exposure of the cells to one of the excitatory neuropeptides linked to the phospholipase C intracellular cascade, i.e., cholecystokinin (CCK), gastrin-releasing peptide, and Substance P. Desensitization was homologous after a 30-s pre-exposure and heterologous if pre-exposure lasted for 5 min or longer. Homologous desensitization was studied in a more detailed way after pre-exposure to CCK. Preincubation with increasing concentrations of CCK (10 pM-1 microM) induced a progressive rightward shift of the dose-response curves associated with both a decrease in potency (ED50 4.5 pM-2.2 nM) and a maximum response that were not related to a modification of response kinetics. After brief pre-exposure to 1 nM CCK (Dmax), an inhibition of contraction was observed in response to an identical dose of CCK (45.1 +/- 8.6%), the decreased response being associated with an inhibition of inositol phosphates and [Ca++]i mobilization. Both inositol trisphosphate (InsP3)-induced contraction and [Ca++]i mobilization were inhibited to a lesser extent than CCK-induced responses. Any longer pre-exposure of cells to one of the above-mentioned neuropeptides caused heterologous desensitization, with an observed inhibition of contraction in response to all tested agonists (CCK, 60.3 +/- 5.9%; gastrin-releasing peptide: 56.7 +/- 3. 5%; Substance P, 60.6 +/- 6.5%). A similar decrease was observed in InsP3-induced contractions resulting in a desensitization of the InsP3 response as well. Full recovery of contractile responses appeared within 30 min from the end of preincubation, thus indicating that degradation of membrane receptors did not occur. Although pre-exposure of the cells to protein kinase C inhibitor GF109203X did not modify CCK-induced homologous desensitization, it blocked CCK-induced heterologous desensitization. This study demonstrates that excitatory phospholipase C-coupled enteric neuropeptides induce a time-dependent homologous as well as heterologous desensitization of smooth muscle contraction occurring at receptor and postreceptor levels.

Keywords

Male, Inositol Phosphates, Guinea Pigs, Neuropeptides, Stomach, Muscle, Smooth, Substance P, Sensitivity and Specificity, castric smooth muscle cells; pharmacological desensitization; signalling transduction., Kinetics, Gastrin-Releasing Peptide, Animals, Calcium, Cholecystokinin, Cells, Cultured, Muscle Contraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!