Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Biochemistr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinical Biochemistry
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tacrolimus metabolite cross-reactivity in different tacrolimus assays

Authors: Diane L Davis; Diane L Davis; Jayasimha N. Murthy; Randall W. Yatscoff; Steven J. Soldin; Steven J. Soldin; Steven J. Soldin;

Tacrolimus metabolite cross-reactivity in different tacrolimus assays

Abstract

Tacrolimus (FK506) is an immunosuppressive drug with great clinical promise. There is a controversy regarding the role of tacrolimus metabolites in immunosuppression and toxicity, and immunoassays and immunophilin binding assays have not been adequately tested for metabolite cross-reactivity. Methods are limited to HPLC and HPLC-MS for quantifying the parent drug. Mixed lymphocyte culture assay (MLC) is the preferred functional bioassay for the measurement of parent drug and active metabolites but it is not practical for routine laboratory use. Due to differences in assay methods and reagent specificity, the concentration of tacrolimus in a given specimen may vary among different assay kit manufacturers. The objective of this study was to evaluate the degree of cross-reactivity or interference of the three first-generation tacrolimus metabolites [13-O-demethyl (M-I), 31-O-demethyl (M-II) and 15-O-demethyl (M-III)] among two different tacrolimus immunoassays (Immunoassay: PRO-Trac II FK506, Abbott IMx tacrolimus-II); and the radioreceptor assays (RRA) using minor immunophilins (14, 37, and 52 kDa immunophilins) and tacrolimus binding protein (FKBP12).First-generation tacrolimus metabolites (M-I, M-II, and M-III) spiked in drug-free whole blood were assayed with RRA using three minor immunophilins (14, 37, and 52 kDa) and two commercial immunoassay procedures (Incstar PRO-Trac II tacrolimus, Abbott IMx tacrolimus II). The results were compared to previously published FKBP-12 RRA data and their immunosuppressive potency.The first generation tacrolimus metabolites (M-I, M-II, and M-III) were tested using concentrations of 10 and 20 ng/mL. The significance of the metabolite interference (% of the total interference) was calculated based on the relative concentration of each metabolite present at steady-state trough concentrations in renal transplant recipients (22). Metabolite I, which has no functional immunosuppressive activity showed minimal interference compared to M-II and M-III in all assays except the 14 kDa RRA. The Incstar PRO-Trac II tacrolimus assay showed the least M-I interference. Metabolite-II, which has a pharmacologic potency similar to the parent drug, showed a significant interference in the immunoassays and significant interference in radioreceptor assays. Metabolite III, which is pharmacologically inactive, produces 3-10% interference in the different assays if its presence in the blood is 6% of the parent drug. The total interference from these three metabolites was greater in the immunoassays than in the receptor assays. Receptor assays for tacrolimus provide results closer to the target value than do immunoassays.

Keywords

Immunoassay, Radioligand Assay, Cross Reactions, Immunophilins, Kidney Transplantation, Immunosuppressive Agents, Tacrolimus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?