Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemico-Biological I...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemico-Biological Interactions
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carbonyl reductase

Authors: G L, Forrest; B, Gonzalez;

Carbonyl reductase

Abstract

Carbonyl reductase (secondary-alcohol:NADP(+) oxidoreductase, EC 1.1. 1.184) belongs to the family of short chain dehydrogenases/reductases (SDR). Carbonyl reductases (CBRs) are NADPH-dependent, mostly monomeric, cytosolic enzymes with broad substrate specificity for many endogenous and xenobiotic carbonyl compounds. They catalyze the reduction of endogenous prostaglandins, steroids, and other aliphatic aldehydes and ketones. They also reduce a wide variety of xenobiotic quinones derived from polycyclic aromatic hydrocarbons. CBR reduces the anthracycline anticancer drugs, daunorubicin(dn) and doxorubicin (dox) to their C-13 hydroxy metabolites, changing the pharmacological properties of these drugs. Emerging data on CBRs over the last several years is generating new insights on the potential involvement of CBRs in a variety of cellular and molecular reactions associated with drug metabolism, detoxication, drug resistance, mutagenesis, and carcinogenesis.

Related Organizations
Keywords

Chromosomes, Human, Pair 21, Aldo-Keto Reductases, Carboxylic Acids, Chromosome Mapping, Antineoplastic Agents, Substrate Specificity, Xenobiotics, Alcohol Oxidoreductases, Aldehyde Reductase, Neoplasms, Animals, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    216
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
216
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!