Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 2001
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interaction of anandamide with the M1 and M4 muscarinic acetylcholine receptors

Authors: Arthur Christopoulos; Kathryn M Wilson;

Interaction of anandamide with the M1 and M4 muscarinic acetylcholine receptors

Abstract

The M(1) and M(4) muscarinic acetylcholine receptors are the most abundant muscarinic receptor subtypes in the brain, and are involved in learning and memory. Because cannabinoid receptors are also abundantly expressed in similar brain regions and mediate opposite effects to acetylcholine on cognition, the present study investigated whether the endocannabinoid agonist, anandamide, and its metabolically stable derivative, methanandamide, directly modified the binding properties of the human M(1) and M(4) receptors individually expressed in CHO cell membranes. Experiments utilized the antagonists, [(3)H]N-methylscopolamine and [(3)H]quinuclidinyl benzilate. When acetylcholine was used as the inhibiting ligand, shallow, biphasic isotherms were observed at both receptors, characterised by similar apparent dissociation constants for high and low affinity binding at each receptor but with a greater proportion of high affinity sites at the M(4) (40-45%) than at the M(1) receptor (17-20%). In contrast, anandamide and methanandamide inhibited the binding of both radioligands over a narrow (low micromolar) concentration range, with monophasic isotherms characterized by Hill coefficients significantly greater than 1 at both receptors. These effects were not due to the vehicle used. Further saturation binding analyses found anandamide able to significantly reduce the apparent affinity and maximal density of binding sites labeled by [(3)H]quinuclidinyl benzilate. Interestingly, no significant inhibition of radioligand binding was noted using the synthetic cannabinoid agonist, WIN55212-2, or the cannabinoid CB(1) receptor antagonist, SR141716A. These data thus provide evidence for a direct role of anandamides in modulating muscarinic receptor binding properties through a non-competitive mechanism that is unrelated to their actions on cannabinoid receptors.

Related Organizations
Keywords

Binding Sites, Cannabinoids, Polyunsaturated Alkamides, Brain, Parasympatholytics, Arachidonic Acids, CHO Cells, Muscarinic Antagonists, N-Methylscopolamine, Calcium Channel Blockers, Binding, Competitive, Acetylcholine, Quinuclidinyl Benzilate, Piperidines, Memory, Cricetinae, Cannabinoid Receptor Modulators, Animals, Pyrazoles, Endocannabinoids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?