
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The effects of five diacylglycerols (DAGs), diolein, 1-stearoyl,2-arachidonoyl-sn-glycerol, dioctanoylglycerol, 1-oleoyl,2-sn-acetylglycerol, and dipalmitin (DP), on the structure of lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine (4:1 mol/mol) were examined by 2H nuclear magnetic resonance (NMR). Dipalmitoylphosphatidylcholine deuterated at the alpha- and beta-positions of the choline moiety was used to probe the surface region of the membranes. Addition of each DAG except DP caused a continuous decrease in the beta-deuteron quadrupole splittings and a concomitant increase in the alpha-deuteron splittings indicating that DAGs induce a conformational change in the phosphatidylcholine headgroup. Additional evidence of conformational change was found at high DAG concentrations (> or = 20 mol%) where the alpha-deuteron peaks became doublets indicating that the two alpha-deuterons were not equivalent. The changes induced by DP were consistent with the lateral phase separation of the bilayers into gel-like and fluid-like domains with the phosphatidylcholine headgroups in the latter phase being virtually unaffected by DP. The DAG-induced changes in alpha-deuteron splittings were found to correlate with DAG-enhanced protein kinase C (PK-C) activity, suggesting that the DAG-induced conformational changes of the phosphatidylcholine headgroups are either directly or indirectly related to a mechanism of PK-C activation. 2H NMR relaxation measurements showed significant increase of the spin-lattice relaxation times for the region of the phosphatidylcholine headgroups, induced by all DAGs except DP. However, this effect of DAGs did not correlate with the DAG-induced activation of PK-C.
Diglycerides, Structure-Activity Relationship, Magnetic Resonance Spectroscopy, 1,2-Dipalmitoylphosphatidylcholine, Lipid Bilayers, Biophysics, Molecular Conformation, Phosphatidylcholines, Phosphatidylserines, Deuterium
Diglycerides, Structure-Activity Relationship, Magnetic Resonance Spectroscopy, 1,2-Dipalmitoylphosphatidylcholine, Lipid Bilayers, Biophysics, Molecular Conformation, Phosphatidylcholines, Phosphatidylserines, Deuterium
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
