
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>This paper gives a detailed analysis of experiments on the kinetics of aggregation of lipid vesicles containing neural cell adhesion molecules (N-CAM). An explanation for the dependence of the "initial aggregation rate," kagg, on the square of the vesicle concentration is given, accounting both for Brownian motion of the vesicles and shear effects. A model in which trimers of N-CAM are one-half of the molecular unit bridging two vesicles explains the observed dependence of kagg on up to the sixth power of the lateral N-CAM concentration and corroborates electron micrographic evidence for N-CAM "triskelions."
Antigens, Surface, Liposomes, Biophysics, Cell Adhesion, Cell Adhesion Molecules, Models, Biological, Mathematics, Cell Aggregation
Antigens, Surface, Liposomes, Biophysics, Cell Adhesion, Cell Adhesion Molecules, Models, Biological, Mathematics, Cell Aggregation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
