<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 1731804
Purified rat liver phenylalanine hydroxylase is inactivated in vitro by ascorbate and thiol compounds, dithiothreitol being the most effective inhibitor, with a second order rate constant for the inactivation of 0.066 +/- 0.002 mM-1.min-1 at 20 degrees C and pH 7.2. Anaerobic conditions and catalase protected the enzyme from inactivation by dithiothreitol. This suggests that hydrogen peroxide, produced by oxidation of the thiol, is involved in the inactivation. The substrate, L-phenylalanine, also partially protected the enzyme from this inactivation. It is shown that incubation of the enzyme with dithiothreitol at aerobic conditions, followed by gel filtration, causes the release of iron from the active site. The inactivation by dithiothreitol was reversed by incubation of the iron-depleted enzyme with Fe(II).
Phenylalanine Hydroxylase, Ascorbic Acid, Catalase, Glutathione, Rats, Dithiothreitol, Kinetics, Norepinephrine, Liver, Animals, Anaerobiosis, Cysteine, Mercaptoethanol
Phenylalanine Hydroxylase, Ascorbic Acid, Catalase, Glutathione, Rats, Dithiothreitol, Kinetics, Norepinephrine, Liver, Animals, Anaerobiosis, Cysteine, Mercaptoethanol
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |