Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 1998
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 1998 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Voltage clamp studies on S-layer-supported tetraether lipid membranes

Authors: Bernhard Schuster; Dietmar Pum; Uwe B. Sleytr;

Voltage clamp studies on S-layer-supported tetraether lipid membranes

Abstract

Isolated subunits from the cell surface proteins (S-layer) of Bacillus coagulans E38-66 have been recrystallized on a glycerol dialkyl nonitol tetraether lipid (GDNT)-monolayer and the electrophysical features of this biomimetic membrane have been investigated in comparison to unsupported GDNT-monolayers. The GDNT-monolayer, spread on a Langmuir-Blodgett trough, was clamped with the tip of a glass patch pipette. In order to investigate the barrier function and potential to incorporate functional molecules, voltage-clamp examinations on plain and S-layer-supported GDNT-monolayers were per-formed. Our results indicate the formation of a tight GDNT-monolayer sealing the tip of the glass pipette, and a decrease in conductance of the GDNT-monolayer upon recrystallization of the S-layer protein. Thus, the S-layer protein, apparently, did not penetrate or rupture the lipid monolayer. The valinomycin-mediated increase in conductance was less pronounced for the S-layer-supported than for the plain GDNT-monolayer, indicating differences in the accessibility and/or in the fluidity of the lipid membranes. Furthermore. in contrast to plain GDNT-monolayers. S-layer supported GDNT-monolayers with high valinomycin-mediated conductance persisted over long, periods of time, indicating enhanced stability. These composite S-layer/lipid films may constitute a new tool for electrophysical and electrophysiological studies on membrane-associated and membrane-integrated biomolecules.

Keywords

Patch-Clamp Techniques, Valinomycin, Cell Membrane, Biophysics, Electric Conductivity, Membrane Proteins, Bacillus, Cell Biology, Biomimetic membrane, Biochemistry, Anti-Bacterial Agents, Diglycerides, Membrane Lipids, Bacterial Proteins, Electron microscopy, Electrochemistry, Crystalline surface (S)-layer, Tetraether lipid monolayer, Crystallization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Average
Top 10%
Top 10%
hybrid