
Better understanding of the mechanisms of ischemia-reperfusion injury, improvement in the technique of lung preservation, and the recent introduction of a new preservation solution specifically developed for the lungs have helped to reduce the incidence of primary graft dysfunction after lung transplantation. Currently, the limitation in extending the ischemic time is more often related to the increasing use of non-ideal lung donors rather than to poor lung preservation. In this review, we have focused our attention on the experimental and clinical work performed to optimize the methods of lung preservation from the time of retrieval to the period of reperfusion after graft implantation.
Graft Rejection, Lung Diseases, Time Factors, Patient Selection, Graft Survival, Organ Preservation Solutions, Organ Preservation, Tissue Donors, Reperfusion Injury, Humans, Lung, Lung Transplantation
Graft Rejection, Lung Diseases, Time Factors, Patient Selection, Graft Survival, Organ Preservation Solutions, Organ Preservation, Tissue Donors, Reperfusion Injury, Humans, Lung, Lung Transplantation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 81 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
