
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Engineered T cell therapies show considerable promise in the treatment of refractory malignancies. Given the ability of engineered T cells to engraft and persist for prolonged periods along with unpredicted toxicities, incorporation of a suicide gene to allow selective depletion after administration is desirable. Rapamycin is a safe and widely available immunosuppressive pharmaceutical that acts by heterodimerization of FKBP12 with the FRB fragment of mTOR. The apical caspase caspase 9 is activated by homodimerization through its CARD domain. We developed a rapamycin-induced caspase 9 suicide gene. First, we showed that caspase 9 could be activated by a two-protein format with replacement of the CARD domain with both FRB and FKBP12. We next identified an optimal compact single-protein rapamycin caspase 9 (rapaCasp9) by fusing both FRB and FKBP12 with the catalytic domain of caspase 9. Functionality of rapaCasp9 when co-expressed with a CD19 CAR was demonstrated in vitro and in vivo.
Cytotoxicity, Immunologic, Sirolimus, T-Lymphocytes, Genetic Vectors, Genes, Transgenic, Suicide, Gene Expression, Caspase 9, Immunophenotyping, Mice, suicide genes, Gene Expression Regulation, cancer, Animals, Humans, Original Article, Protein Interaction Domains and Motifs, immunotherapy, Biomarkers, Cells, Cultured
Cytotoxicity, Immunologic, Sirolimus, T-Lymphocytes, Genetic Vectors, Genes, Transgenic, Suicide, Gene Expression, Caspase 9, Immunophenotyping, Mice, suicide genes, Gene Expression Regulation, cancer, Animals, Humans, Original Article, Protein Interaction Domains and Motifs, immunotherapy, Biomarkers, Cells, Cultured
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 78 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
