Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radboud Repositoryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2010
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Genetics and Metabolism
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel mutations in the NDUFS1 gene cause low residual activities in human complex I deficiencies

Authors: Hoefs, S.J.G.; Skjeldal, O.H.; Rodenburg, R.J.T.; Rodenburg, R.J.T.; Nedregaard, B.; van Kaauwen, E.; Spiekerkotter, U.; +7 Authors

Novel mutations in the NDUFS1 gene cause low residual activities in human complex I deficiencies

Abstract

Mitochondrial complex I deficiency is the most frequently encountered defect of the oxidative phosphorylation system. To identify the genetic cause of the complex I deficiency, we screened the gene encoding the NDUFS1 subunit. We report 3 patients with low residual complex I activity expressed in cultured fibroblasts, which displayed novel mutations in the NDUFS1 gene. One mutation introduces a premature stop codon, 3 mutations cause a substitution of amino acids and another mutation a deletion of one amino acid. The fibroblasts of the patients display a decreased amount and activity of complex I. In addition, a disturbed assembly pattern was observed. These results suggest that NDUFS1 is a prime candidate to screen for disease-causing mutations in patients with a very low residual complex I activity in cultured fibroblasts.

Keywords

Male, Mitochondrial Diseases, DNA Mutational Analysis, Humans, Amino Acid Sequence, Child, Cells, Cultured, Sequence Deletion, Electron Transport Complex I, Base Sequence, IGMD 9: Renal disorder, Brain, Infant, NADH Dehydrogenase, Fibroblasts, Magnetic Resonance Imaging, Laboratory Medicine - Radboud University Medical Center, Amino Acid Substitution, Codon, Nonsense, Child, Preschool, Mutation, NCMLS 4: Energy and redox metabolism, Female, IGMD 8: Mitochondrial medicine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
Green