Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Methodsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Methods
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Methods
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Methods
Article . 2019
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Engineered viral RNA decay intermediates to assess XRN1-mediated decay

Authors: Phillida A. Charley; Cary T. Mundell; Carol J. Wilusz; Jeffrey Wilusz; Joseph Russo;

Engineered viral RNA decay intermediates to assess XRN1-mediated decay

Abstract

Both RNA synthesis and decay must be balanced within a cell to achieve proper gene expression. Additionally, modulation of RNA decay specifically offers the cell an opportunity to rapidly reshape the transcriptome in response to specific stimuli or cues. Therefore, it is critical to understand the underlying mechanisms through which RNA decay contribute to gene expression homeostasis. Cell-free reconstitution approaches have been used successfully to reveal mechanisms associated with numerous post-transcriptional RNA processes. Historically, it has been difficult to examine all aspects of RNA decay in such an in vitro setting due, in part, to limitations on the ability to resolve larger RNAs through denaturing polyacrylamide gels. Thus, in vitro systems to study RNA decay rely on smaller, less biologically relevant RNA fragments. Herein, we present an approach to more confidently examine RNA decay parameters of large mRNA size transcripts through the inclusion of an engineered XRN1-resistant reporter RNA (xrRNA). By placing a 67 nucleotide xrRNA near the 3' end of any in vitro transcribed RNA with variable size or sequence context, investigators can observe the accumulation of the xrRNA as a readout of exoribonuclease-mediated 5'-3' decay. This approach may allow in vitro RNA decay assays to include full biologically relevant mRNA/mRNPs, extending their utility and allow improved experimental design considerations to promote biologically relevant outcomes.

Related Organizations
Keywords

Cell-Free System, Transcription, Genetic, Denaturing Gradient Gel Electrophoresis, RNA Stability, Dengue Virus, Exoribonucleases, Humans, RNA, Viral, RNA, Messenger, Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating), Genetic Engineering, Microtubule-Associated Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze