Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Methodsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Methods
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Methods
Article . 2019
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational approaches for detection and quantification of A-to-I RNA-editing

Authors: Yishay Pinto; Erez Y. Levanon;

Computational approaches for detection and quantification of A-to-I RNA-editing

Abstract

Adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine (A-to-I) RNA editing in double-stranded RNA. Such editing is important for protection against false activation of the immune system, but also confers plasticity on the transcriptome by generating several versions of a transcript from a single genomic locus. Recently, great efforts were made in developing computational methods for detecting editing events directly from RNA-sequencing (RNA-seq) data. These efforts have led to an improved understanding of the makeup of the editome in various genomes. Here we review recent advances in editing detection based on the data available to the researcher, with emphasis on the principles underlying the various methods and the limitations they were designed to overcome. We also discuss the available various methods for analyzing and quantifying editing levels. This review collects and organizes the available approaches for analyzing RNA editing and discuss the current status of the different A-to-I detection methods with possible directions for extending these approaches.

Related Organizations
Keywords

Adenosine, Adenosine Deaminase, Genome, Human, Sequence Analysis, RNA, RNA-Binding Proteins, Inosine, Alu Elements, Animals, Humans, RNA, RNA Editing, Single-Cell Analysis, Algorithms, Software

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?