Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Methodsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Methods
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Methods
Article . 2005
versions View all 2 versions
addClaim

ER stress signaling by regulated proteolysis of ATF6

Authors: Jingshi, Shen; Ron, Prywes;

ER stress signaling by regulated proteolysis of ATF6

Abstract

ATF6 is an endoplasmic reticulum (ER) membrane-anchored transcription factor activated by intramembrane proteolysis in the ER stress response. Upon ER stress, ATF6 is transported from the ER to the Golgi to be processed by site-1 and site-2 proteases. The trafficking is controlled by the ER chaperone BiP/GRP78. Here, we describe the experimental methods that we have used to study of ATF6 regulation in tissue culture cells. These methods were used to investigate several key steps of ATF6 activation in the ER stress response including binding and dissociation of BiP to ATF6, translocation from the ER to the Golgi and cleavage in the Golgi. In addition, luciferase reporter assays were a sensitive way to monitor ER stress and ATF6 activation. These methods were not only useful for the study ATF6 and the ER stress response, they might also help to elucidate the roles of the ER stress response in a number of human diseases involving misfolded proteins and in the differentiation of secretory tissues which require higher ER folding capacities.

Related Organizations
Keywords

Molecular Sequence Data, Golgi Apparatus, Endoplasmic Reticulum, Activating Transcription Factor 6, DNA-Binding Proteins, Microscopy, Fluorescence, Humans, Biological Assay, Amino Acid Sequence, Endoplasmic Reticulum Chaperone BiP, Heat-Shock Proteins, HeLa Cells, Molecular Chaperones, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!