Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular and Cellular Cardiology
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease

Authors: Cordula M, Wolf; Libin, Wang; Ronny, Alcalai; Anne, Pizard; Patrick G, Burgon; Ferhaan, Ahmad; Megan, Sherwood; +9 Authors

Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease

Abstract

Mutations in the lamin A/C (LMNA) gene, which encodes nuclear membrane proteins, cause a variety of human conditions including dilated cardiomyopathy (DCM) with associated cardiac conduction system disease. To investigate mechanisms responsible for electrophysiologic and myocardial phenotypes caused by dominant human LMNA mutations, we performed longitudinal evaluations in heterozygous Lmna(+/-) mice. Despite one normal allele, Lmna(+/-) mice had 50% of normal cardiac lamin A/C levels and developed cardiac abnormalities. Conduction system function was normal in neonatal Lmna(+/-) mice but, by 4 weeks of age, atrioventricular (AV) nodal myocytes had abnormally shaped nuclei and active apoptosis. Telemetric and in vivo electrophysiologic studies in 10-week-old Lmna(+/-) mice showed AV conduction defects and both atrial and ventricular arrhythmias, analogous to those observed in humans with heterozygous LMNA mutations. Isolated myocytes from 12-month-old Lmna(+/-) mice exhibited impaired contractility. In vivo cardiac studies of aged Lmna(+/-) mice revealed DCM; in some mice this occurred without overt conduction system disease. However, neither histopathology nor serum CK levels indicated skeletal muscle pathology. These data demonstrate cardiac pathology due to heterozygous Lmna mutations reflecting a 50% reduction in lamin protein levels. Lamin haploinsufficiency caused early-onset programmed cell death of AV nodal myocytes and progressive electrophysiologic disease. While lamin haploinsufficiency was better tolerated by non-conducting myocytes, ultimately, these too succumbed to diminished lamin levels leading to dilated cardiomyopathy, which presumably arose independently from conduction system disease.

Keywords

Cardiomyopathy, Dilated, Cell Nucleus, Heterozygote, MAP Kinase Signaling System, Myocardium, Apoptosis, Arrhythmias, Cardiac, Cell Separation, Lamin Type A, Electrophysiology, Mice, Muscular Diseases, Heart Conduction System, Atrioventricular Node, In Situ Nick-End Labeling, Animals, Telemetry, Age of Onset, Ultrasonography

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    149
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
149
Top 1%
Top 10%
Top 1%
bronze