Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Relative contribution of cell contact pattern, specific PKC isoforms and gap junctional communication in tight junction assembly in the mouse early embryo

Authors: Eckert, Judith J.; McCallum, Amanda; Mears, Andrew; Rumsby, Martin G.; Cameron, Iain T.; Fleming, Tom P.;

Relative contribution of cell contact pattern, specific PKC isoforms and gap junctional communication in tight junction assembly in the mouse early embryo

Abstract

In mouse early development, cell contact patterns regulate the spatial organization and segregation of inner cell mass (ICM) and trophectoderm epithelium (TE) during blastocyst morphogenesis. Progressive membrane assembly of tight junctional (TJ) proteins in the differentiating TE during cleavage is upregulated by cell contact asymmetry (outside position) and suppressed within the ICM by cell contact symmetry (inside position). This is reversible, and immunosurgical isolation of the ICM induces upregulation of TJ assembly in a sequence that broadly mimics that occurring during blastocyst formation. The mechanism relating cell contact pattern and TJ assembly was investigated in the ICM model with respect to PKC-mediated signaling and gap junctional communication. Our results indicate that complete cell contact asymmetry is required for TJ biogenesis and acts upstream of PKC-mediated signaling. Specific inhibition of two PKC isoforms, PKCdelta and zeta, revealed that both PKC activities are required for membrane assembly of ZO-2 TJ protein, while only PKCzeta activity is involved in regulating ZO-1alpha+ membrane assembly, suggesting different mechanisms for individual TJ proteins. Gap junctional communication had no apparent influence on either TJ formation or PKC signaling but was itself affected by changes of cell contact patterns. Our data suggest that the dynamics of cell contact patterns coordinate the spatial organization of TJ formation via specific PKC signaling pathways during blastocyst biogenesis.

Related Organizations
Keywords

570, Cell Communication, Mouse embryo, 630, Tight Junctions, Mice, Protein kinase C, Ectoderm, Animals, Molecular Biology, Tight junction, ZO-1, Protein Kinase C, ZO-2, Cell Membrane, Gap Junctions, Cell Biology, Up-Regulation, Isoenzymes, Blastocyst, Trophectoderm, Inner cell mass, Female, Cell contact pattern, Developmental Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
hybrid