Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pharmaceu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2016
Data sources: Lirias
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmaceutical Sciences
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pharmaceutical Applications of Electrospraying

Authors: Nguyen, Nhat Duong; Clasen, Christian; Van den Mooter, Guy;

Pharmaceutical Applications of Electrospraying

Abstract

The electrohydrodynamic atomization technique, or simply called electrospraying, has been extensively studied for biomedical as well as for pharmaceutical applications over the past years. The simplicity, flexibility, and efficiency of producing particles at the microscale or nanoscale, with tailored size, shape, morphology, and microstructure, make electrospraying to become one of the most promising and well-practiced approaches to be applied in many biomedical and pharmaceutical fields, from improving the bioavailability of poorly aqueous soluble drugs, preparing targeted drug delivery systems, and controllable drug release systems to delivering sensitive therapeutic agents such as protein-based drugs or even living cells. Nevertheless, some issues still remain with respect to low throughput as well as the complex interplay between a great number of processing and formulation factors. A comprehensive understanding of these fundamental aspects is essential for the successful application of electrospraying for the production of particulate formulations with desired properties.

Related Organizations
Keywords

SUSTAINED-RELEASE, amorphous, Polymers, Surface Properties, Chemistry, Multidisciplinary, Drug Compounding, 3214 Pharmacology and pharmaceutical sciences, electrospraying, Chemistry, Medicinal, formulation, SOLID DISPERSIONS, physicochemical properties, ENCAPSULATION EFFICIENCY, WATER-SOLUBLE DRUGS, drug delivery systems, Drug Delivery Systems, Pharmacology & Pharmacy, Particle Size, Science & Technology, ELECTROHYDRODYNAMIC ATOMIZATION, IN-VITRO, Electrochemical Techniques, polymeric drug, delivery systems, Chemistry, microspheres, Pharmaceutical Preparations, Solubility, Delayed-Action Preparations, Physical Sciences, SPRAY-DRYING FORMULATION, POLYMER PARTICLES, Nanoparticles, nanoparticles, processing, FIXED-DOSE COMBINATION, 1115 Pharmacology and Pharmaceutical Sciences, controlled release, Life Sciences & Biomedicine, CRYSTALLIZATION TENDENCY

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    175
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
175
Top 1%
Top 10%
Top 1%
Green
bronze