Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photodegradation of cyanotoxins in surface waters

Authors: Tyler Kurtz; Teng Zeng; Fernando L. Rosario-Ortiz;

Photodegradation of cyanotoxins in surface waters

Abstract

Cyanotoxin-producing harmful algal blooms (HABs) are a global occurrence and pose ecotoxicological threats to humans and animals alike. The presence of cyanotoxins can seriously harm or kill nearby wildlife and restrict a body of water's use as a drinking water supply and recreational site, making it imperative to fully understand their fate and transport in natural waters. Photodegradation contributes to the overall degradation of cyanotoxins in environmental systems, especially for those present in the photic zone of surface waters. This makes photochemical transformation mechanisms important factors to account for when assessing the persistence of cyanotoxins in environmental systems. This paper reviews current knowledge on the photodegradation rates and pathways of cyanotoxins that can occur over the course of HABs. Sensitized, or indirect, photolysis contributes to the degradation of all cyanotoxins addressed in this paper (anatoxins, cylindrospermopsins, domoic acids, microcystins, and nodularins), with hydroxyl radicals (•OH), excited triplet states formed from the absorption of light by dissolved organic matter (3DOM*), and photosynthetic pigment sensitized pathways being of primary interest. Direct photolysis pathways play a less significant role, but are still relevant for most of the cyanotoxins discussed in this paper.

Related Organizations
Keywords

Photolysis, Hydroxyl Radical, Harmful Algal Bloom, Animals, Humans, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 1%
Top 10%
Top 1%
hybrid