
pmid: 15922257
Preconditioning describes a very powerful endogenous mechanism by which the heart may be protected against ischemia and reperfusion injury. Transient administration of a volatile anesthetic before a prolonged ischemic episode reduces myocardial infarct size to a degree comparable to that observed during ischemic preconditioning. Many components of the signal transduction pathways responsible for cardioprotection are shared by anesthetic and ischemic preconditioning. Exposure to volatile anesthetics generates small "triggering" quantities of reactive oxygen species (ROS) by directly interacting with the mitochondrial electron transport chain or indirectly through a signaling cascade in which G-protein-coupled receptors, protein kinases, and mitochondrial ATP-sensitive potassium (K(ATP)) channels play important roles. Several clinical studies also suggest that preconditioning by volatile anesthetics exerts beneficial effects in patients undergoing cardiac surgery. This review summarizes some of the recent major developments in the understanding of cardioprotection by volatile anesthetics.
Cardiotonic Agents, Anesthetics, Inhalation, Ischemic Preconditioning, Myocardial, Animals, Humans
Cardiotonic Agents, Anesthetics, Inhalation, Ischemic Preconditioning, Myocardial, Animals, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 57 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
