
Abstract Very accurate vibrational spectra of silicates are obtained from DFT calculations if the appropriate Hamiltonian is used. Theoretical considerations suggest that the Hartree–Fock component of ACM1 hybrid functionals should be 1/6 instead of 1/4 for this class of compounds. When applied to the PBE functional this removes the scaling error of the calculated vibrational frequencies. Calculations using this PBE(n = 6) functional in combination with optimized Gaussian basis sets result in very small remaining deviations between observed and calculated Raman shifts, with standard uncertainties of ≈3.5 cm−1, maximum deviations of ≈10 cm−1, and no significant systematic trends. This has been confirmed for a wide range of silicate structures, for which high-quality Raman spectra have been published: forsterite α-Mg2SiO4 (nesosilicate), γ-Y2Si2O7 (sorosilicate), K2Ca3Si3O10 (oligosilicate), K2Ca4Si8O21 (phyllosilicate), and α-quartz SiO2 (tectosilictae).
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
