Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ultrasound in Medici...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ultrasound in Medicine & Biology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Attenuation Coefficient Estimation of Normal Placentas

Authors: Farah Deeba; Manyou Ma; Mehran Pesteie; Jefferson Terry; Denise Pugash; Jennifer A. Hutcheon; Chantal Mayer; +2 Authors

Attenuation Coefficient Estimation of Normal Placentas

Abstract

Attenuation coefficient estimation has the potential to be a useful tool for placental tissue characterization. A current challenge is the presence of inhomogeneities in biological tissue that result in a large variance in the attenuation coefficient estimate (ACE), restricting its clinical utility. In this work, we propose a new Attenuation Estimation Region Of Interest (AEROI) selection method for computing the ACE based on the (i) envelope signal-to-noise ratio deviation and (ii) coefficient of variation of the transmit pulse bandwidth. The method was first validated on a tissue-mimicking phantom, for which an 18%-21% reduction in the standard deviation of ACE and a 14%-24% reduction in the ACE error, expressed as a percentage of reported ACE, were obtained. A study on 59 post-delivery clinically normal placentas was then performed. The proposed AEROI selection method reduced the intra-subject standard deviation of ACE from 0.72 to 0.39 dB/cm/MHz. The measured ACE of 59 placentas was 0.77 ± 0.37 dB/cm/MHz, which establishes a baseline for future studies on placental tissue characterization.

Related Organizations
Keywords

Adult, Placenta, Signal Processing, Computer-Assisted, Middle Aged, Young Adult, Pregnancy, Reference Values, Humans, Female, Ultrasonography

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!