
Mammalian messenger RNA (mRNA) and long noncoding RNA (lncRNA) contain tens of thousands of posttranscriptional chemical modifications. Among these, the N(6)-methyl-adenosine (m(6)A) modification is the most abundant and can be removed by specific mammalian enzymes. m(6)A modification is recognized by families of RNA binding proteins that affect many aspects of mRNA function. mRNA/lncRNA modification represents another layer of epigenetic regulation of gene expression, analogous to DNA methylation and histone modification.
Adenosine, RNA-Binding Proteins, Methyltransferases, Epigenesis, Genetic, Translational Research, Biomedical, Mice, Animals, Humans, RNA, RNA, Long Noncoding, RNA, Messenger
Adenosine, RNA-Binding Proteins, Methyltransferases, Epigenesis, Genetic, Translational Research, Biomedical, Mice, Animals, Humans, RNA, RNA, Long Noncoding, RNA, Messenger
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 124 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
