Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transplant Immunolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Transplant Immunology
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hepatic tissue engineering

Authors: Katherine M, Kulig; Joseph P, Vacanti;

Hepatic tissue engineering

Abstract

Fulminant hepatic failure (FHF) attributes to rising medical cost and accounts for many deaths each year in the United States. Currently, the only solution is organ transplantation. Due to increasing donor organ shortage, many in need of transplantation continue to remain on the waiting list. Liver Assist Devices (LADs) are being used to temporarily sustain liver function and bridge the period between FHF and transplantation. Hepatic Tissue Engineering is a step toward alleviating the need for donor organs; yet many challenges must be overcome including scaffold choice, cell source and immunological barriers. Bioreactors have aided in hepatocyte survival and have proven to sustain viable cells for several weeks. Achieving the necessary functions required for hepatic replacement is aided by the incorporation of growth factors and mitogens many that now can be bound to the polymer scaffold and released in a timely manner. Utilizing concepts such as MicroElectroMechanical systems (MEMs) technology, our laboratory is able to mimic the natural vasculature of the liver and sustain functional and viable hepatocytes. Expanding and improving upon this platform technology, advancements made will continue toward the development of a fully functioning and implantable liver.

Related Organizations
Keywords

Tissue Engineering, Cell Survival, Cell Culture Techniques, Liver Failure, Acute, Liver, Artificial, Tissue Donors, Bioreactors, Hepatocytes, Animals, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!