Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transportation Resea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Transportation Research Part B Methodological
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revisiting McFadden’s correction factor for sampling of alternatives in multinomial logit and mixed multinomial logit models

Authors: Dekker, T.; Bansal, P.; Huo, J.;

Revisiting McFadden’s correction factor for sampling of alternatives in multinomial logit and mixed multinomial logit models

Abstract

In this paper, we revisit McFadden (1978)'s correction factor for sampling of alternatives in multinomial logit (MNL) and mixed multinomial logit (MMNL) models. McFadden (1978) proved that consistent parameter estimates are obtained when estimating MNL models using a sampled subset of alternatives, including the chosen alternative, in combination with a correction factor. We decompose this correction factor into i) a correction for overestimating the MNL choice probability due to using a smaller subset of alternatives, and ii) a correction for which a subset of alternatives is contrasted through utility differences and thereby the extent to which we learn about the parameters of interest in MNL. Keane and Wasi (2016) proved that the overall expected positive information divergence - comprising the above two elements - is minimised between the true and sampled likelihood when applying a sampling protocol satisfying uniform conditioning. We generalise their result to the case of positive conditioning and show that whilst McFadden (1978)'s correction factor may not minimise the overall expected information divergence, it does minimise the expected information loss with respect to the parameters of interest. We apply this result in the context of Bayesian analysis and show that McFadden (1978)'s correction factor minimises the expected information loss regarding the parameters of interest across the entire posterior density irrespective of sample size. In other words, McFadden (1978)'s correction factor has desirable small and large sample properties. We also show that our results for Bayesian MNL models transfer to MMNL and that only McFadden (1978) correction factor is sufficient to minimise the expected information loss in the parameters of interest. Monte Carlo simulations illustrate the successful application of sampling of alternatives in Bayesian MMNL models.

Country
United Kingdom
Keywords

Information loss, Methodology (stat.ME), FOS: Computer and information sciences, Mixed multinomial logit, Sampling of alternatives, Applications (stat.AP), Bayesian estimation, Statistics - Applications, Statistics - Methodology, Multinomial logit

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid