
pmid: 30745055
Over 160 distinct RNA modifications are known and collectively termed the epitranscriptome. Some of these modifications have been discovered in mRNA, uncovering a new layer of gene regulation. Transcriptome-wide mapping of epitranscriptomic codes and the discovery of their writers, erasers, and readers that dynamically install, remove, and interpret RNA modifications, respectively, are fundamental to understanding the epitranscriptome. Recent technologies have enabled the transcriptome-wide profiling of several mRNA modifications in Arabidopsis thaliana, providing key insights into regulating these modifications and their effects on plant development. Here we review technological innovations and recent progress in epitranscriptomics, with specific focus on N6-methyladenosine (m6A), 5-methylcytosine (m5C), uridylation, and their roles in multiple aspects of plant development.
Gene Expression Regulation, Arabidopsis, Plant Development, RNA, RNA, Messenger, RNA Processing, Post-Transcriptional, Transcriptome
Gene Expression Regulation, Arabidopsis, Plant Development, RNA, RNA, Messenger, RNA Processing, Post-Transcriptional, Transcriptome
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 105 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
