
pmid: 29433919
The classical example of nonadditive contributions of the two parents to allopolyploids is nucleolar dominance, which entails silencing of one parental set of ribosomal RNA genes. This has been observed for many other loci. The prevailing explanation for this genome-wide expression disparity is that the two merged genomes differ in their transposable element (TE) complement and in their level of TE-mediated repression of gene expression. Alternatively, and not exclusively, gene expression dominance may arise from mismatches between trans effectors and their targets. Here, we explore quantitative models of regulatory mismatches leading to gene expression dominance. We also suggest that, when pairs of merged genomes are similar from one allopolyploidization event to another, gene-level and genome dominance patterns should also be similar.
570, Models, Genetic, QH426 Genetics, Genes, Plant, Polyploidy, Mutagenesis, Insertional, Gene Expression Regulation, Plant, DNA Transposable Elements, Nucleolus Organizer Region, Gene Silencing, Cell Nucleolus, Genome, Plant
570, Models, Genetic, QH426 Genetics, Genes, Plant, Polyploidy, Mutagenesis, Insertional, Gene Expression Regulation, Plant, DNA Transposable Elements, Nucleolus Organizer Region, Gene Silencing, Cell Nucleolus, Genome, Plant
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 89 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
