
pmid: 15337158
Until recently, the only archaeon for which a bona fide origin of replication was reported was Pyrococcus abyssi, where a single origin was identified. Although several in silico analyses have suggested that some archaeal species might contain more than one origin, this has only been demonstrated recently. Two studies have shown that multiple origins of replication function in two archaeal species. One study identified two origins of replication in the archaeon Sulfolobus solfataricus, whereas a second study used a different technique to show that both S. solfataricus and Sulfolobus acidocaldarius have three functional origins. These are the first reports of archaea having multiple origins. This finding has implications for research on the mechanisms of DNA replication and evolution.
DNA Replication, DNA, Archaeal, Chromosomes, Archaeal, Archaeal Proteins, Centromere, Replication Origin, Archaea, Sulfolobus
DNA Replication, DNA, Archaeal, Chromosomes, Archaeal, Archaeal Proteins, Centromere, Replication Origin, Archaea, Sulfolobus
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
