
pmid: 26003219
Plant organs initiate from meristems and grow into diverse forms. After initiation, organs enter a morphological phase where they develop their shape, followed by differentiation into mature tissue. Investigations into these processes have revealed numerous factors necessary for proper development, including transcription factors such as the KNOTTED-LIKE HOMEOBOX (KNOX) genes, the hormone auxin, and miRNAs. Importantly, these factors have been shown to play a role in organogenesis in various diverse model species, revealing both deep conservation of regulatory strategies and evolutionary novelties that led to new plant forms. We review here recent work in understanding the regulation of organogenesis and in particular leaf formation, highlighting how regulatory modules are often redeployed in different organ types and stages of development to achieve diverse forms through the balance of growth and differentiation.
Homeodomain Proteins, Indoleacetic Acids, Models, Genetic, Organogenesis, Meristem, Gene Expression Regulation, Developmental, Plant Development, Plant Leaves, Gene Expression Regulation, Plant, Plant Proteins
Homeodomain Proteins, Indoleacetic Acids, Models, Genetic, Organogenesis, Meristem, Gene Expression Regulation, Developmental, Plant Development, Plant Leaves, Gene Expression Regulation, Plant, Plant Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 69 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
