
Signaling pathways function as the information-passing mechanisms of cells. A number of databases with extensive manual curation represent the current knowledge base for signaling pathways. These databases motivate the development of computational approaches for prediction and analysis. Such methods require an accurate and computable representation of signaling pathways. Pathways are often described as sets of proteins or as pairwise interactions between proteins. However, many signaling mechanisms cannot be described using these representations. In this opinion, we highlight a representation of signaling pathways that is underutilized: the hypergraph. We demonstrate the usefulness of hypergraphs in this context and discuss challenges and opportunities for the scientific community.
Databases, Factual, Gene Expression Regulation, Computational Biology, Proteins, Computer Simulation, Models, Biological, Signal Transduction
Databases, Factual, Gene Expression Regulation, Computational Biology, Proteins, Computer Simulation, Models, Biological, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
