
pmid: 15245907
The expression of functional proteins in heterologous hosts is a cornerstone of modern biotechnology. Unfortunately, proteins are often difficult to express outside their original context. They might contain codons that are rarely used in the desired host, come from organisms that use non-canonical code or contain expression-limiting regulatory elements within their coding sequence. Improvements in the speed and cost of gene synthesis have facilitated the complete redesign of entire gene sequences to maximize the likelihood of high protein expression. Redesign strategies are discussed here, including modification of translation initiation regions, alteration of mRNA structural elements and use of different codon biases.
Gene Expression Regulation, Proteins, Sequence Analysis, DNA, Cloning, Molecular, Codon, Protein Engineering, Recombinant Proteins
Gene Expression Regulation, Proteins, Sequence Analysis, DNA, Cloning, Molecular, Codon, Protein Engineering, Recombinant Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
