
pmid: 16126387
Anaphase is the stage of the cell cycle in which duplicated chromosomes separate and move towards opposite poles of the cell. Although its chromosome movements have always been viewed as majestic, until recently anaphase lacked obvious landmarks of regulation. The picture has changed with numerous recent studies that have highlighted the raison d'être of anaphase. It is now known to be associated with a series of regulatory pathways that promote a switch from high to low cyclin-dependent kinase activity--an essential feature for proper mitotic exit. The balance between protein phosphorylation and protein dephosphorylation drives and coordinates diverse processes such as chromosome movement, spindle dynamics and cleavage furrow formation. This well-ordered sequence of events is central to successful mitosis.
Yeasts, Mitosis, Proteins, Spindle Apparatus, Phosphorylation, Anaphase, Chromosomes, Cyclin-Dependent Kinases
Yeasts, Mitosis, Proteins, Spindle Apparatus, Phosphorylation, Anaphase, Chromosomes, Cyclin-Dependent Kinases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
