Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Trends in Endocrinol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Endocrinology and Metabolism
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

SR-BI: A Multifunctional Receptor in Cholesterol Homeostasis and Atherosclerosis

Authors: MacRae F, Linton; Huan, Tao; Edward F, Linton; Patricia G, Yancey;

SR-BI: A Multifunctional Receptor in Cholesterol Homeostasis and Atherosclerosis

Abstract

The HDL receptor scavenger receptor class B type I (SR-BI) plays crucial roles in cholesterol homeostasis, lipoprotein metabolism, and atherosclerosis. Hepatic SR-BI mediates reverse cholesterol transport (RCT) by the uptake of HDL cholesterol for routing to the bile. Through the selective uptake of HDL lipids, hepatic SR-BI modulates HDL composition and preserves HDL's atheroprotective functions of mediating cholesterol efflux and minimizing inflammation and oxidation. Macrophage and endothelial cell SR-BI inhibits the development of atherosclerosis by mediating cholesterol trafficking to minimize atherosclerotic lesion foam cell formation. SR-BI signaling also helps limit inflammation and cell death and mediates efferocytosis of apoptotic cells in atherosclerotic lesions thereby preventing vulnerable plaque formation. SR-BI is emerging as a multifunctional therapeutic target to reduce atherosclerosis development.

Related Organizations
Keywords

Cholesterol, Macrophages, Animals, Endothelial Cells, Humans, Biological Transport, Atherosclerosis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    194
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
194
Top 1%
Top 10%
Top 1%
bronze