<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The selective breakdown by autophagy of lipid droplet (LD)-stored lipids, termed lipophagy, is a lysosomal lipolytic pathway that complements the actions of cytosolic neutral lipases. The physiological importance of lipophagy has been demonstrated in multiple mammalian cell types, as well as in lower organisms, and this pathway has many functions in addition to supplying free fatty acids to maintain cellular energy stores. Recent studies have begun to delineate the molecular mechanisms of the selective recognition of LDs by the autophagic machinery, as well as the intricate crosstalk between the different forms of autophagy and neutral lipases. These studies have led to increased interest in the role of lipophagy in both human disease pathogenesis and therapy.
Perilipin-1, Lipolysis, Autophagy, Animals, Humans, Lipid Droplets, Lipid Metabolism
Perilipin-1, Lipolysis, Autophagy, Animals, Humans, Lipid Droplets, Lipid Metabolism
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 121 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |