
arXiv: 1804.10670
A set of vertices $W$ in a graph $G$ is called resolving if for any two distinct $x,y\in V(G)$, there is $v\in W$ such that ${\rm dist}_G(v,x)\neq{\rm dist}_G(v,y)$, where ${\rm dist}_G(u,v)$ denotes the length of a shortest path between $u$ and $v$ in the graph $G$. The metric dimension ${\rm md}(G)$ of $G$ is the minimum cardinality of a resolving set. The Metric Dimension problem, i.e. deciding whether ${\rm md}(G)\le k$, is NP-complete even for interval graphs (Foucaud et al., 2017). We study Metric Dimension (for arbitrary graphs) from the lens of parameterized complexity. The problem parameterized by $k$ was proved to be $W[2]$-hard by Hartung and Nichterlein (2013) and we study the dual parameterization, i.e., the problem of whether ${\rm md}(G)\le n- k,$ where $n$ is the order of $G$. We prove that the dual parameterization admits (a) a kernel with at most $3k^4$ vertices and (b) an algorithm of runtime $O^*(4^{k+o(k)}).$ Hartung and Nichterlein (2013) also observed that Metric Dimension is fixed-parameter tractable when parameterized by the vertex cover number $vc(G)$ of the input graph. We complement this observation by showing that it does not admit a polynomial kernel even when parameterized by $vc(G) + k$. Our reduction also gives evidence for non-existence of polynomial Turing kernels.
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
