Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Academica-earrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Theoretical Computer Science
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theoretical Computer Science
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive characterization of the behaviors of estimation of distribution algorithms

Authors: Carlos Echegoyen; Roberto Santana; Alexander Mendiburu; Jose A. Lozano;

Comprehensive characterization of the behaviors of estimation of distribution algorithms

Abstract

Estimation of distribution algorithms (EDAs) are a successful example of how to use machine learning techniques for designing robust and efficient heuristic search algorithms. Understanding the relationship between EDAs and the space of optimization problems is a fundamental issue for the successful application of this type of algorithms. A step forward in this matter is to create a taxonomy of optimization problems according to the different behaviors that an EDA can exhibit. This paper substantially extends previous work in the proposal of a taxonomy of problems for univariate EDAs, mainly by generalizing those results to EDAs that are able to deal with multivariate dependences among the variables of the problem. Through the definition of an equivalence relation between functions, it is possible to partition the space of problems into equivalence classes in which the algorithm has the same behavior. We provide a sufficient and necessary condition to determine the equivalence between functions. This condition is based on a set of matrices which provides a novel encoding of the relationship between the function and the probabilistic model used by the algorithm. The description of the equivalent functions belonging to a class is studied in depth for EDAs whose probabilistic model is given by a chordal Markov network. Assuming this class of factorization, we unveil the intrinsic connection between the behaviors of EDAs and neighborhood systems defined over the search space. In addition, we carry out numerical simulations that effectively reveal the different behaviors of EDAs for the injective functions defined over the search space { 0 , 1 } 3 . Finally, we provide a novel approach to extend the analysis of equivalence classes to non-injective functions.

Country
Spain
Keywords

Machine learning, Heuristic optimization, Factorizations, Equivalence classes, Estimation of distribution algorithms, Neighborhood systems

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green
hybrid