<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractSimilarity and dissimilarity measures are widely used in many research areas and applications. When a dissimilarity measure is used, it is normally required to be a distance metric. However, when a similarity measure is used, there is no formal requirement. In this article, we have three contributions. First, we give a formal definition of similarity metric. Second, we show the relationship between similarity metric and distance metric. Third, we present general solutions to normalize a given similarity metric or distance metric.
Similarity metric, Normalized similarity metric, Normalized distance metric, Distance metric, Theoretical Computer Science, Computer Science(all)
Similarity metric, Normalized similarity metric, Normalized distance metric, Distance metric, Theoretical Computer Science, Computer Science(all)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 95 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |