
pmid: 17996447
Some cells migrate and find their way as solitary entities. However, during development of multicellular animals and possibly during tumor dissemination, cells often move as groups, associated tightly or loosely. Recent advances in live imaging have aided examination of such 'multicellular cell biology'. Here, I propose a model for how a group of cells can process and react to guidance information as a unit rather than as a gathering of solitary cells. Signaling pathways and regulatory mechanisms can differ substantially between solitary- and collective-guidance modes; a major difference being that, in collective guidance, similar to in bacterial chemotaxis, the signal need not be localized subcellularly within the responding cell. I suggest that collective-guidance signaling occurs alongside individual cell reactions. Both produce directional migration.
570, Chemotaxis, Cell Polarity, Cell Communication, Models, Biological, Cell Movement, 616, Morphogenesis, Animals, Protein Kinases, Signal Transduction
570, Chemotaxis, Cell Polarity, Cell Communication, Models, Biological, Cell Movement, 616, Morphogenesis, Animals, Protein Kinases, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 110 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
