Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thermochimica Actaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Thermochimica Acta
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phenomenological approach to the caloric theory of heat

Authors: J.J. Mareš; P. Hubík; J. Šesták; V. Špička; J. Krištofik; J. Stávek;

Phenomenological approach to the caloric theory of heat

Abstract

Abstract This contribution presents an alternative approach to thermal physics and to its affiliated thermodynamics aiming to initiate a discussion concerning the related problems of its fundamental nature. We reason that the classical thermodynamics suffers considerably from a misinterpretation of experimental facts known as the Principle of Equivalence of Energy and Heat and from the resulting introduction of a troublesome quantity called entropy lacking clear physical meaning within the traditional thermodynamics. As this concept generates an endless chain of paradoxes connected mainly with the Second Law of Thermodynamics , we propose to change the structure and the conceptual basis of thermal physics prior to the solving of more complex problems involving, e.g., the application of quantum or stochastic electrodynamics to the relativistic thermal phenomena. We argue that a good candidate for such a more satisfactory theory is modified Carnot's theory reintroducing an old–new physical quantity historically named caloric. An introducing outline customizing the reader with the basic ideas of this alternative version of the classical thermodynamics is thus given. Principal relations of the caloric theory are presented, together with illustrative treatment of some common tasks of the thermal physics. Use of the caloric theory to description of real heat engines is also presented.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!