Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Systematic and Appli...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Systematic and Applied Microbiology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov.

Authors: Lugli, Gabriele Andrea; Mangifesta, Marta; Duranti, Sabrina; ANZALONE, ROSARIA; Milani, Christian; Mancabelli, Leonardo; Alessandri, Giulia; +4 Authors

Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov.

Abstract

Six Bifidobacterium strains, i.e., Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B, were isolated from domestic goose (Anser domesticus), European hamster (Cricetus cricetus), European rabbit (Oryctolagus cuniculus), emperor tamarin (Saguinus imperator) and pygmy marmoset (Callithrix pygmaea). Cells are Gram-positive, non-motile, non-sporulating, facultative anaerobic and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA, ITS-, multilocus- sequences and the core genome revealed that bifidobacterial strains Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B exhibit close phylogenetic relatedness with Bifidobacterium choerinum LMG 10510, Bifidobacterium hapali DSM 100202, Bifidobacterium saguini DSM 23967 and Bifidobacterium stellenboschense DSM 23968. Genotyping based on the genome sequence of the isolated strains combined with phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, Bifidobacterium anseris sp. nov. (Goo31D=LMG 30189T=CCUG 70960T), Bifidobacterium criceti sp. nov. (Ham19E=LMG 30188T=CCUG 70962T), Bifidobacterium imperatoris sp. nov. (Tam1G=LMG 30297T=CCUG 70961T), Bifidobacterium italicum sp. nov. (Rab10A=LMG 30187T=CCUG 70963T), Bifidobacterium margollesii sp. nov. (Uis1B=LMG 30296T=CCUG 70959T) and Bifidobacterium parmae sp. nov. (Uis4E=LMG 30295T=CCUG 70964T) are proposed as novel Bifidobacterium species.

Countries
Italy, Ireland
Keywords

Behavior and Systematic, DNA, Bacterial, Evolution, 590, Microbiology, Applied Microbiology and Biotechnology, Metagenomic, Phylogenetic, Feces, Bifidobacteria, Next generation sequencing, Cricetinae, RNA, Ribosomal, 16S, Geese, Animals, Phylogeny, Ecology, Base Sequence, Fatty Acids, High-Throughput Nucleotide Sequencing, Callithrix, Genomics, Sequence Analysis, DNA, Bacterial Typing Techniques, Italy, Genomic, Metagenomics, Bifidobacterium, Rabbits, Saguinus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?