Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Systematic and Appli...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Systematic and Applied Microbiology
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reassignment of Enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei

Authors: Daniel Monget; Jürgen Heesemann; Harald Hoffmann; Sibylle Stindl; Wolfgang Ludwig; Karl H. Schleifer; Andreas Roggenkamp; +2 Authors

Reassignment of Enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei

Abstract

The taxonomic position of Enterobacter dissolvens was re-evaluated based on the analysis of the type strain ATCC 23373T and three clinical isolates. The strains were assigned to the genetic cluster of the species by phylogenetic sequence analysis in the frame of a recent population genetic study. The relatedness of E. dissolves to the other species of the E. cloacae complex was analyzed by DNA-DNA hybridization studies based on melting profiles in microplates. The genetic cluster of E. dissolvens fell into the same DNA-relatedness group like E. cloacae with mean deltaTm-values of 3.9 degrees C confirming the hybridization results of three former studies. Phenotypic analysis of the E. cloacae and E. dissolvens strains, respectively, based on 115 biochemical reactions yielded the esculin test as the only one differentiating between them by being positive for E. dissolvens and negative for E. cloacae strains. The name E. cloacae subsp. dissolvens comb. nov. is proposed for the group of organisms formerly referred to as E. dissolvens, and the name E. cloacae subsp. cloacae comb. nov. for the group of organisms formerly referred to as E. cloacae. The species descriptions of Enterobacter kobei and Enterobacter asburiae were emended based on the data collected on 17 and 15 strains, respectively. The strains were assigned to the respective species by a combination of phylogenetic sequence analyzes and DNA-DNA hybridizations. Phenotypic analyzes of 115 reactions gave detailed species profiles with new differentiating phenotypic properties.

Keywords

DNA, Bacterial, Molecular Sequence Data, Enterobacter, Nucleic Acid Hybridization, Genes, rRNA, Sequence Analysis, DNA, DNA, Ribosomal, Bacterial Typing Techniques, Esculin, RNA, Bacterial, RNA, Ribosomal, 16S, Transition Temperature, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!