Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Swarm and Evolutionary Computation
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Weighted strategies to guide a multi-objective evolutionary algorithm for multi-UAV mission planning

Authors: Cristian Ramirez Atencia; Javier Del Ser; David Camacho;

Weighted strategies to guide a multi-objective evolutionary algorithm for multi-UAV mission planning

Abstract

Management and mission planning over a swarm of unmanned aerial vehicle (UAV) remains to date as a challenging research trend in what regards to this particular type of aircrafts. These vehicles are controlled by a number of ground control station (GCS), from which they are commanded to cooperatively perform different tasks in specific geographic areas of interest. Mathematically the problem of coordinating and assigning tasks to a swarm of UAV can be modeled as a constraint satisfaction problem, whose complexity and multiple conflicting criteria has hitherto motivated the adoption of multi-objective solvers such as multi-objective evolutionary algorithm (MOEA). The encoding approach consists of different alleles representing the decision variables, whereas the fitness function checks that all constraints are fulfilled, minimizing the optimization criteria of the problem. In problems of high complexity involving several tasks, UAV and GCS, where the space of search is huge compared to the space of valid solutions, the convergence rate of the algorithm increases significantly. To overcome this issue, this work proposes a weighted random generator for the creation and mutation of new individuals. The main objective of this work is to reduce the convergence rate of the MOEA solver for multi-UAV mission planning using weighted random strategies that focus the search on potentially better regions of the solution space. Extensive experimental results over a diverse range of scenarios evince the benefits of the proposed approach, which notably improves this convergence rate with respect to a na\"ive MOEA approach.

Comment: Preprint submitted and accepted in Swarm and Evolutionary Computation

Keywords

Computer Science - Neural and Evolutionary Computing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 1%
Top 10%
Top 1%
Green